Kimberly Johansson Extavour Lab, Organismic & Evolutionary Biology, Harvard University EDEN Undergraduate Internship: June 16, 2014 to August 22, 2014

Gryllus Techniques and Protocols

Table of Contents:

Antibody staining (immunohistochemistry)	.2-4
gDNA extraction	
Total RNA extraction & cDNA Synthesis	
in situ Hybridization Probe Synthesis	•••

Please note that protocols were developed and updated by Dr. Taro Nakamura, as well as Extavour Lab members Dr. Ben Ewen-Campen and Seth Donoughe. I have added notes and minor adjustments, but did not pioneer any of the protocols.

Antibody Staining (Immunohistochemistry)

To visualize gene expression in cricket embryos

General Notes:

- Embryos are kept in 1.5mL eppendorf tubes.
- All washes are 5 minutes, room temperature and in ~1.4mL solution unless otherwise stated. Swirl to mix after adding solution unless otherwise stated.
- Be careful not to expose embryos to air when removing washes.
- Pipette solution on side of tube to avoid harshly disrupting embryos.
- Throughout, be careful not to pipette up or destroy embryos.

<u>Day 1</u>:

- 1) Rehydrate embryos that have been stored in methanol. Either leave washes on a rotating tube rack or swirl to ensure appropriate mixing.
 - a. 75% MeOH in PBSTw
 - b. 50% MeOH in PBSTw
 - c. 25% MeOH in PBSTw
- 2) Wash 3x in PBSTw. Either leave washes on a rotating tube rack or swirl to ensure appropriate mixing.
- 3) Block in 300µl of 5% NGS/PBSTw for 90min.
- 4) Incubate in your primary antibody mix at a manufacturer suggested concentration, overnight at 4°C.

Day 2:

- 1) Wash 3x in PBSTw for 1 minute. After each wash, swirl, let embryos collect in the bottom of tube, and then change wash.
- 2) Wash 6x in PBSTw for 60 minutes.
- 3) Block in 300µl of 5% NGS/PBSTw for 90min.
- 4) Incubate in your secondary antibody mix and a nuclear stain at a manufacturer suggested concentration, overnight at 4°C. Cover with tinfoil to avoid photobleaching. Typically, we have found 1:1,000 dilution for all the Alexa-coupled secondary antibodies and 1:5,000-1:10,000 for Hoeschst works well.

<u>Day 3:</u>

- Embryos should be kept covered with tinfoil from the secondary antibody incubate forward. You can remove tinfoil to change wash solution, but keep covered during washes.
 - 1) Wash 3x in PBSTw for 1 minute. After each wash, swirl, let embryos collect in the bottom of tube, and then change wash.
 - 2) Wash 6x in PBSTw for 60 minutes.
 - 3) Post-fix in 4% formaldehyde in PBSTw for 30 minutes.
 - 4) Wash 3x in PBSTw for 1 minute. After each wash, swirl, let embryos collect in the bottom of tube, and then change wash.
 - 5) Wash 3x in PBSTw.
 - 6) Store embryos in 50μl of Vector Laboratories Vectashield Mounting Medium, at 4°C. Once mounted, embryos on slides can be stored in colder temperatures.

Recipes

PBS:

Add $2.05g~NaH_2PO_4$ - H_2O and 11.98g~NaHPO to 800mL of DEPC- H_2O . Measure pH. If pH is not 7.4 +/-0.4 adjust with HCl or NaOH. Add 81.76g~NaCl

PBSTw:

Dilute 50mL 10X PBS to 1X with 895mL DEPC- H_2O . Autoclave and cool. Add 5mL 20% Tween-20

gDNA Extraction

To remove the genomic DNA from cricket cells for further use, such as genotyping.

General Notes:

- I have had success using this protocol with cricket eggs, or crickets late instar or older should be used.
- Pestles can be made by briefly heating a p1,000 pipette tip with a Bunsen burner, and then swirling the melty tip in a 1.5mL eppendorf tube. Do not use pestle if there is still an opening in the bottom.

X Instar and Above:

- 1) Anesthetize crickets using carbon dioxide until they stop moving. Can be done in batches of \sim 10, depending how quickly you can perform the following steps.
- 2) Under a dissection scope, lay a KimWipe. Use microscissors to cut off the middle leg from either side of the cricket. Place the leg into a 1.5mL eppendorf tube and return the cricket to its cage to recuperate. Perform serially, cleaning microscissors with 70% EtOH in H₂O in between crickets. Can store continue using fresh, or store frozen at -80°C.

Genomic Prep:

- 1) Add 100µl Buffer A to each sample.
 - → Set dry heat block to 65°C to begin warming.
- 2) Grind by pestle until sample is visibly disrupted.
- 3) Add 300µl Buffer A to each sample; rinse pestle over tube as you pipette, to collect sample stuck to pestle.
- 4) Incubate 30 min at 65°C.
- 5) Add 800µl LiCl/KAc solution, invert repeatedly to mix.
- 6) Incubate 10min on ice. Do not incubate over 10 minutes.
- 7) Spin 15min at 12,000rpm in a microfuge room temperature.
- 8) Transfer 1mL supernatant to new Eppendorf tube, excluding floating crud.
- 9) Add 600µl isopropanol and invert several times to mix.
- 10) Spin 20min at 12,000rpm in a microfuge at room temperature.
- 11) Aspirate and discard s/n. Quick spin. Aspirate again.
- 12) Wash pellet with 500ul cold 70% EtOH in H₂O.
- 13) Spin 10min at 12,000rpm in a microfuge at room temperature.
- 14) Aspirate and discard s/m. Quick spin. Aspirate again.
- 15) Air dry pellets ~10min.
- 16) Resuspend in $50\mu l$ TE (or $\sim 10\mu l$ per embryo) for several hours at room temperature or overnight at $4^{\circ}C$.
- 17) Measure concentration with spectrophotometer.
- 18) Store at -20°C.

Recipes:

Buffer A

	Per prep (μl)
1M Tris-HCl, pH 7.5	40
500 mM EDTA, pH 8.0	80
5M NaCl	8
10% SDS	20
H_2O	To 400

LiCl/KAc Solution

	Per prep (µl)
5M KAc	230
6M LiCl	570

Total RNA Extraction & cDNA Synthesis

To extract RNA from embryos and make a library of cDNA from cricket embryos, as a more stable alternative to mRNA.

General Notes:

- Be certain to clean bench and pipettes first with water and 70% ethanol.
- Use \sim 20 embryos per tube.
- Can repeat cDNA reaction with 2x, 3x, 4x etc volume if the reaction fails.
 - 1) Add 200µl Trizol.
 - *Note: Steps involving Trizol must be performed under a fume hood and with caution, as Trizol is toxic.
 - 2) Homogenize with pestle, by hand.
 - 3) Add 800µl Trizol; rinse pestle over tube as you pipette, to collect sample stuck to pestle.
 - 4) Spin 10min at 12,000rpm at 4°C in a microfuge.
 - 5) Incubate 5min at room temperature.
 - 6) Add 200µl chloroform.
 - * Note: Steps involving chloroform must be performed under a fume hood and with caution, as chloroform is toxic.
 - 7) Vortex for 15sec.
 - 8) Incubate 3min at room temperature.
 - 9) Spin 15min at 12,000rpm at 4°C in a microfuge.
 - 10) Collect supernatant and add 500µl isopropanol.
 - 11) Spin 15min at 12,000rpm at 4°C in a microfuge.
 - 12) Aspirate and discard s/n.
 - 13) Wash with 500µl 70% EtOH in MilliQ H₂O.
 - 14) Spin 15min at 12,000rpm at 4°C in a microfuge.
 - 15) Aspirate and discard s/n.
 - 16) Air dry 2-3min. Do not fully dry, as it can be difficult to dissolve completely dried RNA.
 - 17) Resuspend in $10\mu I$ MilliQ H_2O . Use water from a new tube, that is certainly clean.
 - 18) Measure concentration with spectrophotometer.
 - 19) Use Invitrogen SuperScript III First-Strand Synthesis System for RT-PCR to generate cDNA.
 - 20) Measure concentration with spectrophotometer. Can also perform a PCR and gel electrophoresis with reliable primers/conditions to test cDNA quality.

in situ Hybridization Probe Synthesis

To generate probes for use visualizing mRNA in Gryllus.

General Notes:

- 1) Amplify your target gene.
- 2) Assemble the following reaction in a 1.5mL eppendorf tube, using your target gene as template and either T7 or Sp6-T7 primers for sense and antisense probes. Seal tube lids with parafilm.

Reagent	1x (μl)
10x RNA polymerase buffer	2
Dig labeling mix	2
RNAse inhibitor	1
RNA Polymerase	2
500ng template	X
MQ H ₂ O	Το 20μ1

- 3) Incubate 3-4h at 37°C.
- 4) Add 30µl TE, 5µl 3M NaOAC, and 2.5volumes (125µl) of cold 100%EtOH.
- 5) Incubate on ice at least 20min.
- 6) Spin 15min at max speed at 4°C in a microfuge.
- 7) Aspirate and discard supernatant.
- 8) Add 500 μ l; cold 75% EtOH in H₂O.
- 9) Invert several times to mix.
- 10) Spin 5min at max speed at 4°C in a microfuge.
- 11) Aspirate and discard supernatant.
- 12) Air dry 2-3 (and certainly under 5) minutes.
- 13) Dissolve in 20ul TE. Do not pipette or vortex.
- 14) Dilute 1:10 in TE to check reaction by measuring the concentration on a spectrophotometer and running in gel electrophoresis.*Wash box and comb, and change running buffer before making gel to decrease RNAses.
- 15) Adjust to 100ng/µl in hybridization solution. Store at -20°C.